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Abstract. The semiclassical analysis of Eckhardtet al for the variance of quantum expectation
values in classically chaotic systems is extended to obtain the transitional form as time-reversal
symmetry is gradually broken. Numerical results for a family of perturbed cat maps confirm
this analysis, including the halving of the variance as time-reversal symmetry is fully broken.

1. Introduction

We study the approach to the classical limit of the diagonal matrix elements of an operator
A, assumed to correspond to a classical observableAc(z), in the eigenstate basis of a
classically chaotic quantum system. The quantum equidistribution theorem of Shnirelman
[1], further developed by Zelditch [2] and Colin de Verdiére [3], states that, for classically
ergodic systems, the diagonal elementsAn tend to the microcanonical average ofAc(z).

Eckhardtet al [4] developed a semiclassical theory for the varianceσ 2 of the expectation
valuesAn, thereby establishing the rate at which the classical limit is approached. For
strongly chaotic systems (for example, systems for which correlation functions decay faster
than 1/t), they obtained the result

σ 2 = α

TH
g (1)

whereα = 〈A2
c〉E is related to the classical variance (〈·〉E denotes the average over the energy

shell), TH is the Heisenberg time (i.e. the time conjugate to the mean level separation) of
the system, andg is a symmetry factor equal to 2 for time-reversal invariant systems and 1
for systems without time-reversal symmetry.

Time reversal is a symmetry linked to a global property of the spectrum. In random
matrix theory, systems without time-reversal symmetry belong to the unitary ensemble
(the Gaussian unitary ensemble (GUE) for Hamiltonians; the circular unitary ensemble
(CUE) for unitary operators), whereas time-reversal invariant systems (without spin) belong
to the orthogonal ensemble (the Gaussian orothogonal ensemble (GOE) and the circular
orthogonal ensemble (COE), respectively). A central theme of quantum chaology is the
conjecture [5, 6], supported by extensive numerical evidence [7] and semiclassical theories
[8–11], that this classification also applies to classically chaotic quantum systems in the
semiclassical limit.
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Much attention has been paid to the transition between the orthogonal and unitary
ensembles [12, 13]. Our purpose here is to study the variance of diagonal matrix elements
in this regime, both in terms of a semiclassical theory based on the trace formula and
direct numerical calculations. The results obtained also hold for systems with false broken
time-reversal symmetry [14, 15].

This paper is organized as follows. In section 2, we obtain the transitional behaviour
of the varianceσ 2 as time-reversal symmetry is gradually broken. The result is of the form
(1), but the factorg is found to depend on a symmetry-breaking parameter, decreasing from
2 to 1 as this parameter increases. We compare this expression with numerical calculations
of quantum expectation values for a family of strongly chaotic systems (section 4). The
systems we consider, perturbed cat maps, are described briefly in section 3.

2. Derivation of the variance

We consider quantum maps, although essentially the same analysis can be applied to
quantum Hamiltonians. A quantum map is represented by a unitary matrixU , whose
dimensionN plays the role of the inverse of Planck’s constant. We denote its eigenvectors
and eigenvalues by|n〉 and exp(−iθn). U corresponds to a classical mapφ, assumed to be
chaotic. LetA be a quantum observable with classical limitAc(z). For convenience we
takeA to be traceless, so that its diagonal matrix elementsAn = 〈n|A|n〉 have zero mean,
and the phase-space average ofAc(z) vanishes. Let

σ 2 = 1

N

N∑
n=1

A2
n (2)

denote the variance of theAn.
Our analysis is a straightforward extension of that of Eckhardtet al [4], who obtained a

semiclassical expression forσ 2 for systems with and without time-reversal symmetry. Here
we allow the dynamics to depend on a parameterκ which gradually breaks time-reversal
symmetry, or more generally, an anticanonical symmetry. An anticanonical symmetryK is
an involution (i.e.K ◦ K = 1) obtained from the composition of the time-reversal mapT

with a canonical transformation; a classical mapφ is invariant underK if K ◦φ ◦K = φ−1.
For ease of discussion, we shall, in this section, takeK to be simply time reversal itself
(although for the family of maps considered in section 3, this will not be the case). Thus, we
supposeφ has time-reversal symmetry only forκ = 0. A is assumed to beκ-independent
and time-reversal invariant (i.e.Ac ◦ T = Ac). To make the discussion self-contained, we
present the derivation in full.

Consider the smoothed, weighted spectral density,

dA(θ) = 1

2π

∞∑
τ=−∞

Tr(AUτ )eiτθhε(|τ |)

=
N∑
n=1

Anδε(θ − θn). (3)

Herehε(|τ |) is a smooth cut-off function, decreasing from 1, when|τ | � 1/ε, to 0, when
|τ | � 1/ε. Its discrete Fourier transform,

δε(θ) = 1

2π

∞∑
τ=−∞

exp(iτθ)h(|τ |) (4)

is a smoothed periodic delta function with peaks of widthε.



Expectation values and time-reversal symmetry 5633

Squaring the expression in (3), we obtain

d2
A(θ) =

N∑
m,n=1

AmAnδε(θ − θm)δε(θ − θn). (5)

Taking ε to be smaller than the mean eigenangle spacing (= 2π/N ), we may neglect the
off-diagonal (m 6= n) terms in the sum. For the diagonal terms, we make use of Berry’s
observation [9] that the product of twoδε ’s is again delta-function-like. In particular,

δ2
ε (θ − θn) ≈

1

aε
δε′(θ − θn) (6)

where the scaled widthε′ and normalization constanta depend on the particular form of
δε(θ). Our results do not depend essentially on the chosen form; we note thata is given by

1

a
= ε

∫ 2π

0
δ2
ε (θ) dθ = ε

2π

∞∑
τ=−∞

h2
ε(|τ |). (7)

Thus, integration of (5) overθ yields the formula

σ 2 = aε

N

∫ 2π

0
d2
A(θ) dθ (8)

for the variance.
A semiclassical expression is obtained from the weighted trace formula [16]

dA(θ) = 1

2π

∑
p

Apwpeiτpθ+2π iNSphε(|τp|). (9)

The sum is taken over periodic orbitsp of the classical map, including both positive and
negative traversals, with integer periodsτp, actionsSp and amplitudeswp = 1/rp| det(Mp−
I )|−1/2 expressed in terms of the monodromy matrixMp and repetition numberrp. The
quantity Ap =

∑τp
s=1Ac(zs) is the classical observableAc(z) summed along the (not

necessarily primitive) orbit.
Squaring the expression in (9), we obtain

d2
A(θ) =

1

4π2

∑
p,q

ApAqwpwqei(τp−τq )θ+2π iN(Sp−Sq)hε(|τp|)hε(|τq |). (10)

We evaluate the double sum in the diagonal approximation, which in this case means
keeping contributions only fromq = p and q = p∗, wherep∗ labels the time reverse of
the orbitp whenκ = 0. This is justified by the fact that the off-diagonal contributions are
semiclassically smaller [10].

As discussed by Berry and Robnik [17] in the context of Aharonov–Bohm billiards,
when κ 6= 0, the phase differences1p = Sp − Sp∗ cause theq = p∗ contributions to
cancel. Complete cancellation occurs asκ increases over a classically small range, and the
differencesAp − Ap∗ andwp − wp∗ can be neglected forκ in this range. Restricting the
orbit sum to positive traversals, we thereby obtain

d2
A(θ) =

1

2π2

∑
p

A2
pw

2
p(1+ e2π iN1p)h2

ε(τp). (11)

Next, terms in the sum are replaced by their average values for long orbits. Assuming
such orbits to be uniformly distributed in phase space, we takeAp to be randomly distributed
with zero mean and variance

〈A2
p〉 = ατp (12)
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whereα is the phase-space average ofA2
c(z). For the phase differences1p = Sp − Sp∗ , we

make the ansatz that these are normally distributed with zero mean and variance〈12
p〉 = ξτp

proportional to the period. Averaging the phase factors exp(2π iN1p) with respect to this
distribution, we find that

〈e2π iN1p 〉 = e−2π2N2ξτp . (13)

As discussed in the appendix (see also [13]), the parameterξ is proportional toκ2, and may
be estimated empirically from the classical dynamics.

Finally, we invoke the Hannay–Ozorio de Almeida sum rule [8] to replace the weighted
sum over orbits

∑
p τp|wp|2 by a sum over periods

∑∞
τ=1. From these considerations we

obtain

d2(θ) = α

2π2

∞∑
τ=1

(1+ e−2π2N2ξτ )h2
ε(τ ). (14)

Substituting (14) into (8) and using (7), we obtain our main result,

σ 2 = αgε(2π2N2ξ)

N
(15)

where

gε(s) = 1+
∑∞

τ=1 e−sτ h2
ε(τ )∑∞

τ=1 h
2
ε(τ )

. (16)

The functiongε(s) interpolates between the limiting values for the time-reversal-invariant
and non-time-reversal invariant cases [4]:gε(s) decreases from 2, whens � ε, to 1, when
s � ε. For Lorentzian smoothing, i.e.hε(|τ |) = exp−(ε|τ |), the sums in (16) are easy to
evaluate, and one obtains the explicit expression

gε(s) = 1+ 1− e−2ε

1− e−(s+2ε)
e−s . (17)

The smoothing widthε determines the scale over which the transition (15) occurs.
Within the simple diagonal approximation employed here, its value cannot be precisely
fixed, but it is constrained by the requirement thatε be smaller than the mean spacing
2π/N . For consistency with the more general semiclassical method of [10], its value should
be of the order of the mean level separation, i.e. 2π/N (it is under this assumption that the
diagonal approximation can be justified). When comparing (15) to numerical results, we
shall takeε = π/N , i.e. half of the mean spacing.

For s small (for example, of orderε), expression (17) simplifies to

gε(s) = 1+ 1

1+ s/2ε . (18)

This expression is obtained by replacing the sums
∑∞

τ=1 in (16) by integrals
∫∞

0 dT , and
therefore gives precisely the form ofgε(s) appropriate for flows (as opposed to maps).

3. Perturbed cat maps

Cat maps, or hyperbolic automorphisms of the two-torus, are area-preserving maps of the
torus of the form

φM(z) = M · z mod 1 (19)

wherez = (q, p) mod 1 andM is an integer matrix with unit determinant and trace greater
than 2. Cat maps are amongst the simplest examples of hyperbolic systems. An exact
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quantization procedure was found by Hannay and Berry [18]. (By exact, we mean that
quantization of the iterated map, which is itself a cat map, gives the same result as iteration
of the quantized map.) We will take

M =
[

2 1
3 2

]
(20)

for which the quantized map has a simple form. We note thatφM is invariant under the
time-reversal mapT (z) = (q,−p).

While the classical dynamics of the cat maps is generic, the quantum behaviour is not;
degeneracies in the periodic orbit spectrum of number-theoretical origin lead to different
spectral statistics than those of the circular ensembles of random matrix theory [19].
Baśılio de Matos and Ozorio de Almeida [20] quantized nonlinear perturbations of the
cat map (which, according to Anosov’s theorem (see Arnold [21]), remain hyperbolic for
small enough perturbations), and found their spectral statistics to be generic. As they
demonstrated, particularly convenient perturbations from the point of view of quantization
are near-identity shears in momentum and position. These are maps of the form

σp(q, p; κ0) = (q, p − κ0F
′(q)) (21)

σq(q, p; κ) = (q − κG′(p), p). (22)

The parametersκ0 andκ determine the perturbation strength. The semiclassical asymptotics
of perturbed maps of this type was developed by Boasman and Keating [22].

We consider the family of maps

φ = σq ◦ φM ◦ σp (23)

obtained by composing the cat map (19) with a fixed momentum shearσp and a family of
position shearsσq depending onκ. The momentum shearσp serves to break the number-
theoretical degeneracies of the unperturbed cat map. However, because, like the cat map
(19), σp is invariant under time reversal, the compositionφM ◦ σp is invariant under the
anticanonical symmetriesT ◦ σp and φM ◦ T . Thus, the spectral statistics of the singly
sheared cat map are found to be COE [20]. The second shear in position destroys these
anticanonical symmetries forκ 6= 0, and the spectral statistics of the doubly sheared cat
map are typically found to be CUE.

The quantized maps areN -dimensional unitary matrices

U = (FUQF†)UMUP . (24)

We give their explicit form in a position representation. The quantized cat mapUM is given
by [18]

(UM)jk = (iN)−1/2 exp(2π i(j2− jk + k2)/N). (25)

UQ and UP are diagonal matrices with elements exp(−2π iNκG(k/N)) and
exp(2π iNκ0F(k/N)) respectively. The matrixFjk = 1√

N
exp(2π ijk/N) represents a finite-

dimensional Fourier transform.
The shear functionsF andG are taken to be

F(q) = 1

4π2

(
sin 2πq − 1

2
cos 4πq

)
(26)

G(p) = 1

4π2

(
cos 2πp − 1

2
sin 4πp

)
. (27)

κ0 is fixed to be 0.08. Given this value ofκ0, it can be shown, using the conditions of
Anosov’s theorem, that the perturbed mapφ remains hyperbolic forκ ranging between
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Figure 1. Scaled to their variance, the values ofAn for various values ofN are shown, together
with the normal distribution, in the limit of broken time reversal (κ = 0.03).

Figure 2. Scaled by the variance predicted by (15) and (17), the values ofAn for various values
of N are shown, together with the normal distribution, in the transition regime (κ = 0.003).

between 0 and 0.03. For largerκ, the map dynamics becomes mixed, and the semiclassical
structure is strongly affected by orbit bifurcations [23]. The theory developed in section 2
is only valid in the hyperbolic range.

4. Numerical results

We takeA = cos 2πq. In the position representation,A is represented by a diagonal matrix
with elements cos(2πk/N). The classical observableAc(z) = cos 2πq is invariant under
the anticanonical symmetryT ◦ σp, as is the classical mapφ whenκ = 0.

First let us consider the fully unitary case, which is achieved withκ = 0.03. In
figure 1, we display a combined histogram of values ofAn for Hilbert spaces dimensions
N = 493, 495, 497, 499 and 501. Each set of values is scaled to its variance1

N

∑N
n=1A

2
n to

make the comparison with the superimposed Gaussian normal distribution.
In figure 2, we display the combined distribution of values ofAn for κ = 0.003, i.e.

in the transition regime. The dimensionsN are as above, and the values are scaled by
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Figure 3. Variances for the operator̂A = cos 2πq, for values ofN around 400, 500 and 600.κ
assumes the following four values; 1× 10−3, squares; 2× 10−3, downward triangles; 5× 10−3,
circles; and 3× 10−2, upward triangles. Superimposed are the semiclassical predictions (15)
and (17) withε = π/N .

the variance predicted by the semiclassical formulae (15) and (17), withε = π/N . (It
was checked that scaling with respect to the numerically computed variance, as in figure 1,
makes no discernible difference.)ξ is estimated numerically from the classical dynamics,
as discussed in the appendix. There are marked deviations in the computed distribution
from Gaussian behaviour.

In figure 3, the numerically computed variances are compared with the semiclassical
formulae (15) and (17) (ε and ξ are as above). The agreement is reasonably good, and
improves with increasingN , as expected. It was confirmed that, providedε is on the order
of the mean spacing, the quality of the fit does not depend on its precise value.

There are two anomalies in the data. AtN = 501 andN = 593, the computed variance
for κ = 0.005 is actually less than that forκ = 0.03; i.e. the ordering of the upwards
triangles and circles in figure 3 is reversed. To explain these anomalies, we have to recall
the results of the linear cat map. First, the dimensions we worked with are all odd, with
clusters aroundN = 400, 500 and 600. For instance, around 500, the values ofN chosen
were from 493 to 503 in steps of 2. We avoided evenN ’s because their number-theoretical
degeneracies are harder to break—they do not give generic random matrix statistics.

On the other hand, there is the high rigidity which occasionally occurs for a given
N . This is another peculiarity owing to an unusually high quantum period functionn(N)

for the propagatorUc [19]. For the problematic dimensions, we haven(501) = 498 and
n(593) = 594.

In figure 4, we show the results for the total transition: COE to CUE. The semiclassical
predictions do not depend onε in this case.

5. Conclusions

We have developed a semiclassical theory for the transitional form of the variance of
diagonal matrix elements of hyperbolic systems as time-reversal symmetry is gradually
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Figure 4. Variances for the operatorA for κ = 0 (time-reversal symmetry intact), diamonds,
and κ = 0.03 (time-reversal symmetry fully broken), circles. The lines are predictions of the
semiclassical theory of [4],g = 2 andg = 1 in equation (15), respectively.

broken. The symmetry factorg in (1) is found to decrease from 2 to 1 as the symmetry-
breaking parameter increases. There is good agreement with numerical calculations
performed on a family of perturbed cat maps, specifically introduced to allow the effects of
broken time-reversal symmetry to be studied.

The distribution of diagonal matrix elements in the transition regime shown in figure 2
exhibits interesting deviations from Gaussian behaviour, which we feel merit further
investigation. It would also be interesting to compare our semiclassical approximation
with exact results obtained from the nonlinearσ -model [24].
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Appendix. The variance of∆p

The relationship between the varianceξτp of the action differences1p and the perturbation
constantκ can be deduced by a Taylor expansion of the actions. The first correction in the
action in the perturbed case is of orderκ2, and therefore

ξ = cκ2. (28)

To determine the constant of proportionality numerically, the varianceξ was evaluated
for a subset of periodic orbits of a given period, fromτ = 3 to τ = 15. The results are
shown in figure 5. Orbits invariant under time-reversal were discarded from the calculation.
(As is easily verified for the unperturbed cat map (19), all period-two orbits are time-reversal
invariant.)

With the exponential increase in the number of orbits with period, only a subset of the
periodic orbits withτ > 8 could be included. For a given period, this subset corresponded to
orbits of the unperturbed cat map lying on a rational lattice with maximum denominatorq.
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Figure 5. The variance of periodic orbit actions,ξτ , for κp = 0.01, together with a linear fit,
for which p(τ) = 6.34× 10−8τ − 1.5× 10−7, and hencec = 6.34× 10−4.

It so happens that all the orbits of period 13 are in the same rational lattice, withq = 3691.
These orbits were not investigated, as the objectives of keeping all orbits on a rational
sublattice and restricting computational efforts to a reasonable level were incompatible.
Typically, for τ > 8, hundreds of orbits were considered. Repetitions must be (and were)
included in this calculation.κ was set to 0.01.

Although we have not used this approach, one could of course estimate the variance by
computing action differences for nonperiodic orbits of given lengthτ , and averaging over
initial conditions.
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